Yep, I even wrote a script to do that. But if your thermostat consistently turns on throughout the day and night, as long as that continues to happen, your computer is not adding more heat than the thermostat would have, the thermostat just has to add 100W less of heat or whatever your computer draws.
Most thermostats just turn on/off, they don’t have a concept of “regular” vs “full blast” because furnaces and other heating appliance don’t, they’re also just on or off. So when heat needs to be added, they turn on, and once there’s enough heat, they turn off. If you run your computer for a bit, they’ll just wait a few more seconds to minutes before turning on again since there’s less of a difference to make up.
Not really. Computers don’t have a linear failure rate due to wear like for example a belt in your car would. Their failure is more or less random (or bathtub shaped if you want to plot it on a graph). Silicon and motherboards are incredibly durable. Go to any electronics recycling facility and you’ll find boards which have been around for 10+ years and still work fine but are no longer relevant. What you won’t find are many functional hard drives etc manufactured the same year.
As long as you don’t have a ton of dust built up, every other component (your HDD, your OS, the laptops hinges, the power supply, etc) in your computer will fail before the silicon (on average) and the device will become obsolete before the silicon fails. No guarantee it happens that way, but on average this is how it tends to go. And whether you ran them at 50% or 100% doesn’t matter because the causes of their failure aren’t really related to load but due to, for example, your OS getting slower over time or infected with malware, gradual overvolting/undervolting over time due to electricity not being 100% “pristine” all the time, etc. There are many people in the BOINC community who have been crunching on the same rigs 100% full throttle for a decade with no issues.
Really the category where lifespan would start to be effected are laptops and androids which really do not have sufficient heat exhaustion to run 100% even for a few minutes and where battery lifespan decreases significantly even for “medium” amounts of heat. For laptops, you can safely run them at around 50% usage (and your efficiency in terms of computation per watt tops out at around 80% anyways though it’s always 100% efficient at generating heat). For Androids, I wouldn’t suggest running BOINC on them unless you can remove the cover and directly expose the hot parts to air.
Yep absolutely. If you consider the cost of electricity a “sunken cost” regardless, you can mine crypto and always turn a profit though your total monthly revenue might be on the order of dollars a month even with heating an entire apartment. Many crypto miners utilize waste heat in some fashion or another. They also tend to flock to places with the cheapest electricity, which tends to be over-provisioned renewables which are needed to balance the totally imbalanced demand curves which every power grid is subject to. If you want to run your grid on 100% renewables, that means that your average production must exceed your peak demand. Which also means during non-peak demand, you now are producing more energy than you need, since supply and demand must be constantly balanced on a minute-by-minute basis to prevent grid failure, this means at times the electric rate may actually go negative as the power companies need somebody to soak up the extra supply since turning on/off production has some costs and delays associated with it. Bitcoin mining takes up around .1% of global energy usage, mostly from renewable sources.
Personally, I’d rather donate my computational power to science. But there are cryptos which will reward you for scientific computation so you can have it both ways. !gridcoin@lemmy.ml rewards BOINC and Folding@home for example, they have been doing that for around ten years. Basically, they asked the question “What if instead of minting coins for people calculating hashes, we did it for people calculating science?”. There’s no separate proof-of-work element so all the energy still goes to science. I collect GRC rewards because it helps a bit with the electric bill but it’s not like it makes me any real money.