I want to let you all know about what I think is one of the coolest yet most under-appreciated ways to reduce waste and improve one’s impact on the world.
A bit of background first: Every watt of electricity you use in your house turns into heat. A blender is just as efficient at turning electricity into heat as a space heater. It sounds counter-intuitive, but ask your grade school physics teacher and you’ll find that the conservation of energy is not a controversial topic in physics. If you have electric heat such as electric baseboards or space heaters (NOT heat pumps since they are >100% efficient), you can heat your house with computers and spend the exact same amount as your normal heat bill but also get some useful computational work done in the process. If you are spending 50W on a space heater, you could instead dump that 50W into your computer. You pay for and get 50W of heat either way, but only the computer does some work along the way.
So really, if you are pouring electricity into a space heater or electric baseboard heater, it’s a waste, because that same electricity could be doing some useful work.
What kind of work? Well, I donate my computer’s time to BOINC. BOINC lemmy at !boinc@sopuli.xyz . (The Berkeley Open Infrastructure for Network Computing) is a free and open-source program that has been around for decades and has delivered teraflops of computing to scientists on a daily basis for absolutely free. It runs on Windows, MacOS, Linux, even Android (just be careful about heat on Android!). You don’t need to be computer-savvy to run it.
BOINC has been used to map the universe, detect asteroids, search for aliens (remember seti@home?), fight cancer, and publish hundreds of scientific papers. The world’s largest particle accelerator (large hadron collider at CERN) even has a project you can compute for, who knows, you may find a new subatomic particle! Anybody with a computer, raspberry pi, or android can contribute their CPU or GPU to the cause and pick which projects they want to contribute to.
One of the awesome things about BOINC is that any scientists with interesting research can instantly access massive amounts of computational power for free. They don’t need time on a supercomputer or institutional backing, all they need is an interesting research concept and a spare laptop to run the server on.
I have been running BOINC for many years and find it very gratifying, I love getting to see the results. In winter, 100% of my indoor heat comes from computing for science.
Being “zero waste” means that we adopt steps towards reducing personal waste and minimizing our environmental impact.
Our community places a major focus on the 5 R’s: refuse, reduce, reuse, recycle, and rot. We practice this by reducing consumption, choosing reusable goods, recycling, composting, and helping each other improve.
We also recognize excess CO₂, other GHG emissions, and general resource usage as waste.
It is nice if you live in a small town or the middle of nowhere to have resistive heating. There aren’t any gas lines running out there to provide your home with a constant stream of gas, so if you want a gas powered solution, you end up having to have a pig (it’s this gas tank thing) outside your home, and you have to pay to have LP trucked out to fill it up many times a winter, and if you forget to check the pig and run out of gas, your family gets cold, and then you have to pay extra to get the truck to come quickly.
Meanwhile resistive heating uses the power lines that are run pretty much everywhere, and you pay monthly with your power bill, instead of incurring a larger charge for a longer period of time all at once.
But also, and I don’t know if this is true or not, so don’t quote me, heat pumps don’t work if it is too cold outside, and a lot of the time when it is winter, it is very cold outside.
Basically, resistive heating has its place. As for running calculations to create heat, I’m not sure if that’s effective on its own, I feel like you’d need a space heater or two to kickstart your way to having a warm home if the temperature changes suddenly, but apart from that the idea seems pretty sound.
If you’re at the temp a heat pump won’t work, resistive heating will likely be tens of thousands a year. A furnace will be more economical.
If you’re somewhere warmer, then a heat pump will be more economical than resistive heating.
The only economical or useful thing about resistive heating is the installation price. But use it for a handful of years and heat pump (even from decades ago) will be better.
We’ve been using a woostove heatpump combo so even it dips below -30 we just warm the house off wood and run the heat pump the rest of the time, I would love setting up a way to use the chimney to exhaust help the heatpump run better in the cold
Proper heat pumps work well inncold weather. The issue is that the drain and the outdoor unit can freeze up if not built for the climate.
Source: am Norwegian. Had a heat pump in my previous house.